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Drag reduction strategies

By D. C. Hill

1. Motivation and objectives

In last year's Annual Research Briefs (Hill 1993) a description was given of an
active control scheme using wall transpiration that leads to a 15% reduction in sur-

face skin friction beneath a turbulent boundary layer, according to direct numerical
simulation. In this research brief further details of that scheme and its variants

are given together with some suggestions as to how sensor/actuator arrays could

be configured to reduce surface drag. The research which is summarized here was

performed during the first half of 1994.

This research is motivated by the need to understand better how the dynamics
of near-wall turbulent flow can be modified so that skin friction is reduced. The

reduction of turbulent skin friction is highly desirable in many engineering appli-

cations. Experiments and direct numerical simulations have led to an increased
understanding of the cycle of turbulence production and transport in the boundary

layer (Robinson 1991) and raised awareness of the possibility of disrupting the pro-

cess with a subsequent reduction in turbulent skin friction (Bushnell & McGinley

1989, Blackwelder 1989). The implementation of active feedback control in a com-

putational setting is a viable approach for the investigation of the modifications to

the flow physics that can be achieved (Choi et al. 1994).

Bewley et al. (1993) and Hill (1993) describe how ideas from optimal control
theory are employed to give "sub-optimal" drag reduction schemes. The objectives

of the work reported here is to investigate in greater detail the assumptions implicit

within such schemes and their limitations. It is also our objective to describe how
an array of sensors and actuators could be arranged and interconnected to form a
"smart" surface which has low skin friction.

2. Accomplishments

As before, the various schemes are aimed at reducing the mean drag upon a plane
wall by the application of distributed or localized blowing and suction. There is no

net mass flux through the wall, and an expense is associated with the control action.

The simulations are performed for a channel flow with a constant mass flux through

the channel. The Reynolds number based on friction velocity is of the order 100 for
the tests.

2.1 Assumptions

The sub-optimal drag reduction scheme of Hill (1993) is based upon minimizing

the drag by considering how the flow is most favorably influenced during consecutive

short time intervals. In order to arrive at the relatively simple control law, several
assumptions must be made about the flow field.
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Only flow structures in a layer close to the wall are significant in deciding how

control will modify the flow evolution. The characteristic thickness of this layer of

influence is

Lr = _ wall units, (1)

where T is the control time interval in wall units over which the local optimization

is made. The layer of fluid between the wall and y+ = LT will be referred to as

the layer of influence. The dynamics of the flow within this layer guides the control

force distribution.

One concern about the original derivation of the result reported last year was

the assumption that there is no mean shear at the wall. The flow was taken to be

uniform, and the effects of mean _hear were assumed to be negligible. Following a

considerable analytical effort, that assumption has been shown to be valid. A re-

derivation of the scheme with mean shear effects included leads to the same result

as that presented by Hill (1993).

Other assumptions made during the derivation have been clarified:

1. Events far from the surface are not modified significantly by the effect of the

surface control velocities.

2. On the control time interval, mixing within the layer of influence is su_ciently

weak that it plays a negligible role in the transport of control signals. There is

an unsteady component in the near-wall flow field. The effect of unsteadiness in

transporting the control signals has been neglected. Note that this does not mean

that unsteadiness has been neglected.

3. Those flow structures which govern the sensitivity of the immediate drag to

changes in the control distribution do not evolve significantly on the control time

interval.

4. The layer of influence is su]ficiently thin that the mean and unsteady flow

components within the layer are represented well by a low order Taylor expansion

at the wall. It is assumed that the differential scale in the wall-normal direction of

the velocity fluctuations is much larger than the thickness of the layer of influence.

It is important to recognize that the present control theory deals only with effi-

cient changes to the behavior of the viscous sub-layer region. The physics of the

sweep events and turbulence production involves events further from the wall which

have a much longer time scale than that of the optimization. Consequently, these

flow characteristics are not necessarily modified in an optimal manner. They are

influenced indirectly by the modifications which are applied in the viscous sub-layer.

_._ Variants of the original scheme

Using the sensitivity function, two classes of scheme have been devised and tested

by direct numerical simulation. The wall-normal velocity component at the nth

time step is represented by its Fourier transform, _(")(a, fl), where a and fl are
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streamwise and spanwise wave numbers (7 = V/a2 +/32). The Fourier transform of

the streamwise velocity fluctuations is denoted by fi(")(a,/3; y).

1. In the spirit of Choi et al. (1994), we considered the scheme

Lr) (2)
= (e - -

2-y_

This scheme uses information within the flow domain at y+ = LT. With g = 1

and LT = 10, a drag reduction of 19% is achieved. The similar scheme of Choi et

al., which applies wall transpiration equal and opposite to the wall-normal velocity

component at y+ = 10, gives a reduction of about 23%.

2. The following relaxation scheme has been tried:

1 }, (3)= 1+ -  LT))  LTl'--ffff-U),=0
where # is a relaxation parameter. This scheme uses wall information only and

leads to a drag reduction of about 14% (/z = 0.05, g = 1, LT = 5).

2.3 Implications for sensor and actuator arrays

In practice an active drag reduction system is likely to consist of an array of wall-

mounted sensors and actuators. For the present scheme, the sensors must measure

the streamwise component of wall shear, while the "actuators" are orifices through

which fluid is injected and removed. The control velocity at a particular actuator

is updated on the basis of information from the sensors in its neighborhood. The

prior control velocities at neighboring actuators are also required.

Consider a rectangular array of locations on the wall at which the control velocity

is specified. Variable (bl,_) denotes the control velocity at the ith streamwise and

jth spanwise position. Let h i and h i be the streamwise and spanwise spacing,

respectively, between actuators. Suppose that the unsteady component of wall shear

in the streamwise direction, _(n) is measured at a similar array of sensor positions,
°i,j ,

which is offset from the actuator array. Let hS_ and h_ be the streamwise and

spanwise spacing of the sensors. In order to define the control update at the (i, j)th

actuator, data from a number of neighboring actuators and sensors is employed.

Let there be N_ streamwise and Nz a spanwise actuators and N s streamwise and N s

spanwise sensors.

The following scheme is proposed:

N 2 N_ N.* N,*

(n-t-l) IM*a &(n) ,,rs (n)
Yv [_,lai+k,j+l"rr k,l_r i+k,j_t_ !

k----I I----1 k=l 1----1

The weights are

W_, t = c(k, Na_)c(I, Na_) h_h_ K(-x_, t, -z_,t),

$ Z aW_, t = c(k, NS)c(l,N_) hShSz K(-x_,t,- k,I),

c(k,N) = 1/2, if k = 1, N,

= 1 otherwise , (5)
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_a a $ 8where ( k,t, zk,I) and (xk,t, zk,t) are the locations of the actuators and sensors, re-
spectively, measured relative to the location of the actuator for which the control

velocity is being computed.

The function K(x, z) is defined by

1 /__:_o f___o ei(_x+13,)K(z,z)= _ _o ,_o(1- 'e--_- 7LT))) dSd_"
t#L --_L --

(6)

The wave number cutoffs a0 and fl0 are introduced since the derivation for the

analytical control law is not defined as a and fl become very large. Preliminary
experience suggests that the application of this cutoff does not have a detrimental
effect.

It has been found that only a few neighboring points offer a significant contribu-

tion to the summation; the weight factors Wi_,j' diminish rapidly in magnitude as
Iil and IJl are increased. This is very encouraging since it suggests that a control

stencil that employs information from nearby sensors and actuators alone may be

quite effective. Experience with the spectral version of the control scheme suggests
that the streamwise spacing between actuators/sensors should not exceed 12 wall

units if the scheme is to be effective. The spanwise spacing should not exceed 4 wall
units.

Once more the author is indebted to T. Bewley for his time, patience, and effort
in the implementation of these rules in the direct numerical simulations.
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Optimal active control for Burgers equation

By Yutaka Ikeda I

A method for active fluid flow control based on control theory is discussed. Dy-

namic programming and fixed point successive approximations are used to accom-
modate the nonlinear control problem. The long-term goal of this project is to

establish an effective method applicable to complex flows such as turbulence and

jets. However, in this report, the method is applied to stochastic Burgers equation
as an intermediate step towards this goal. Numerical results are compared with

those obtained by gradient search methods.

1. Motivation and objectives

There is current research at Stanford to develop active feedback control schemes

based on optimal control theory to control turbulence. In particular, an optimal

control method based on a gradient search algorithm is discussed in Choi, Teman

and Moin (1993) and Bewley and Moin (1994). Such gradient schemes, however,

are not guaranteed to converge to the global minimum of the cost functional and
thus may suffer from degraded performance when compared with the "optimal" in

a given situation.
The objective of the current research is to investigate an alternative method to

the gradient search method without increasing computational complexity. The ap-

proach we take is to impose the convexity onto the cost functional and derive the

analytical optimal controlled solutions for a set of linearized systems. This elimi-
nates the minimization process of the cost functional. Then the optimal controlled

solution for stochastic Burgers equation is found by Fixed Point Theorem. The

resulting method is compared with the gradient method through numerical simula-
tion, then assessments for applicability to more complex flow dynamics are made.

2. Scheme for optimal control

2.1 System model

We consider stochastic Burgers equation as a system model:

Ou 1 02u 0 U 2

Ot Re Ox 2 Ox 2
+ F + X. (1)

Initial condition and boundary conditions are given by u(x,to) = uo(x), x E (0, 1)

and u(0, t) = u(1, t) = 0, t E [to, T]. Also, Re, F(x, t), and X(x, t) denote Reynolds
number, a forcing term, and a normally distributed random forcing term with zero

mean and unit variance, respectively.

1 McDonnell Douglas Aerospace
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In order to control the velocity gradient v = Ou/c3x, we introduce the dynamics

of the velocity gradient, which can be formally obtained by differentiating Burgers
equation with respect to x such that

Ov 1 02v Ov

-_ = Re Ox_ u-o-_z u x v + y + _ (2)

where f(x,t) = OF(x, t)/Ox denotes the control forcing term for the differential

form of Burgers equation and _ = OX(x, t)/Oz, a formally differentiated random
forcing term.

_.2 Cost functional

We consider a control problem in which the cost functional to be minimized is
given by

T 1

J=

te 0

where E[.] denotes a mathematical expectation. In a more general setting, the state,
control, and the cost functional can be formed by

a. , U =

and

where

T 1

to o

+ ld(UTRU))dxdt], (4)

0) 0)Q = q2 0 r2 "

If we select ql small relative to q2 and r2 small relative to rl, we can formulate a

problem similar to that discussed in Choiet al. (1993). However, this introduces a

higher dimension of the system dynamics. For computational simplicity, control of

the decoupled (l-D) system rather than the augmented (2-D) system is considered
by selecting ql = rl = 0, which results in (3).

,_.3 Optimal control strategy

A brief summary of the optimal control strategy is now given:
* Linearize system: Consider the system given by the linear equation

Ov 1 02v Ov

& - Re Uop, - (uop&v + f + (5)

where uopt denotes the solution of Burgers equation (1) when the optimal control
fopt is applied to the system (2).
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* Design a linear optimal controller. The dynamic programming technique is ap-

plied to the linear distributed parameter system (5) to find the optimal control

for the linear system (for detail, see Tza£estas and Nightingale 1968).

* Compute optimal controlled solution Uopt: Once the optimal controller for (5) is

found, integrate Eq. (5) with respect to x to yield:

Ou 1 02u Ou

- Reox Uop, + F + x. (6)

To solve (6) for the optimal controlled solution, we need to know the optimal
solution before it is solved. Hence, for the moment, we replace Uopt in (5) and (6)

by a known function w(x, t) and consider a mapping G(w) defined on a function

space which maps w(x, t) to the solution u(x, t) of (6). Notice that for each w the

optimal controller is designed for the linearized system, and thus each image u of

G(w) forms an optimal solution for the corresponding system. Now, consider a

family of optimal controlled solutions generated by G(w). Then it is clear that the

fixed point of G(w) (if it exists) is the optimal controlled solution Uopt of Burgers

equation (6). To find the fixed point of G(w), a method of successive approximations

is employed.

3. Numerical simulation

An early evaluation of this new optimal control formulation is important for

determining the promise of the approach. To accomplish this, an evaluation through

comparison is performed between the current method and the gradient method

investigated by Choi et al. A numerical example was taken from Choiet al. (1993)

for a comparison study (distributed control problem, case(ii), where the weights

ld = 1 and md = 1/dx in the cost functional, Re = 1500 and dx = 2047). However,

only qualitative comparison is meaningful in the current comparison study since the

control problem is set up differently from the gradient method by Choi et al. in

order to keep the computational complexity low. That is, the current method uses

the cost functional (3) as one of the simplest cases of the more general form (4)

(see discussion in 2.2), while the gradient method by Choiet al. uses the integrated

control F instead of f in the cost functional (3). Another difference is that the cost

functional in Choi et al. (1993) is formulated without the integral sign with respect

to time; hence, the cost is minimized at each instance of time rather than over a

duration of time.

Two different values for the ratio Id/md were considered. Case-l: the weights la

and md were set to be identical with those in the example. Case-2: the weight ld

was reduced by a factor of 1000 to allow more control power, keeping the weight

md the same. In each case, the time histories of the cost functional, control power

used, and gradient at the wall (x = 0) were computed. The results are shown in

Figs. 1-3. The velocities at time 2 second are shown in Fig. 4. The corresponding

figures from Choi et al. (1993) are also shown in Figs. 1, 2, and 4 for comparison.
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FIGURE 1. Time history of the cost functional. Legend: --, without forcing;

.... , with random forcing and no control; -----, with control and random forcing

(case 1); -- -- --, with control and random forcing (case 2); -- --, with control

and random forcing (Choiet. al.).
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FIGURE 2. Time history of momentum forcing. Legend: _, control forcing

(case 2); .... , control forcing (case 1); -----, control forcing (Choi et. al.).
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Fig. 1 shows that both methods reduced the cost functional significantly. The

integrated control power F in each case of the current method and the gradient
method are shown in Fig. 2. It shows that the amount of control F used in Case-

1 is much less than that in Case-2 and the gradient method. Therefore, Case-2

seems more comparable to the example with the gradient method with respect to

the momentum forcing added to Burgers equation. This seems natural since the

velocity gradient becomes large in magnitude, particularly when the random noise
is present. Hence, it requires more control power f when the velocity gradient is

fed back than when the velocity is fed back. Fig. 3 shows that the current method

controls the velocity gradient effectively if enough control power is allowed. Both

Case-1 and the gradient method needed more control power to reduce the gradient

at the wall significantly. From Fig. 4 it can be seen that the current method reduced

the velocity magnitude as well as the velocity gradient while the gradient method
did not reduce the velocity magnitude as much. This may be explained as follows:

the current method seems to control the velocity gradient by regulating the gradient
magnitude uniformly. Then, since the velocity at the boundaries are fixed to be zero,

the velocity magnitude becomes small. On the other hand, the gradient method

seems to control the velocity gradient by linearly scaling down. Hence, it reduces
the absolute magnitude of the higher velocity gradient more significantly. One final

observation is that the control formulated by the current method seems to respond

more than a one order of magnitude faster than that by the gradient method (see
Case-2 in Fig. 1, and Fig. 7(b) in Choi et al. 1993). This is a very important

advantage for non-stationary applications.
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FIGURE 4. Velocity at t = 2. Legend: --, with random forcing and no control;
, with random forcing and control (case 1); -----, with random forcing and

control (case 2); -- - --, with random forcing and control (Choi et. al.).

4. Conclusions

A method for active control of fluid flow dynamics was discussed. The simulation

results show that the current control method works effectively and seems to be

extendable to Navier-Stokes equations without major problems. Applications to

turbulence and/or jet control will be attempted in the near future.
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